927 research outputs found

    Semantics of Input-Consuming Logic Programs

    Get PDF
    Input-consuming programs are logic programs with an additional restriction on the selectability (actually, on the resolvability) of atoms. this class of programs arguably allows to model logic programs employing a dynamic selection rule and constructs such as delay declarations: as shown also in [5], a large number of them are actually input-consuming. \ud in this paper we show that - under some syntactic restrictions - the tex2html_wrap_inline117-semantics of a program is correct and fully abstract also for input-consuming programs. this allows us to conclude that for a large class of programs employing delay declarations there exists a model-theoretic semantics which is equivalent to the operational one

    CP-nets and Nash equilibria

    Full text link
    We relate here two formalisms that are used for different purposes in reasoning about multi-agent systems. One of them are strategic games that are used to capture the idea that agents interact with each other while pursuing their own interest. The other are CP-nets that were introduced to express qualitative and conditional preferences of the users and which aim at facilitating the process of preference elicitation. To relate these two formalisms we introduce a natural, qualitative, extension of the notion of a strategic game. We show then that the optimal outcomes of a CP-net are exactly the Nash equilibria of an appropriately defined strategic game in the above sense. This allows us to use the techniques of game theory to search for optimal outcomes of CP-nets and vice-versa, to use techniques developed for CP-nets to search for Nash equilibria of the considered games.Comment: 6 pages. in: roc. of the Third International Conference on Computational Intelligence, Robotics and Autonomous Systems (CIRAS '05). To appea

    Proof-theoretic Analysis of Rationality for Strategic Games with Arbitrary Strategy Sets

    Full text link
    In the context of strategic games, we provide an axiomatic proof of the statement Common knowledge of rationality implies that the players will choose only strategies that survive the iterated elimination of strictly dominated strategies. Rationality here means playing only strategies one believes to be best responses. This involves looking at two formal languages. One is first-order, and is used to formalise optimality conditions, like avoiding strictly dominated strategies, or playing a best response. The other is a modal fixpoint language with expressions for optimality, rationality and belief. Fixpoints are used to form expressions for common belief and for iterated elimination of non-optimal strategies.Comment: 16 pages, Proc. 11th International Workshop on Computational Logic in Multi-Agent Systems (CLIMA XI). To appea

    Abstract verification and debugging of constraint logic programs

    Get PDF
    The technique of Abstract Interpretation [13] has allowed the development of sophisticated program analyses which are provably correct and practical. The semantic approximations produced by such analyses have been traditionally applied to optimization during program compilation. However, recently, novel and promising applications of semantic approximations have been proposed in the more general context of program verification and debugging [3],[10],[7]

    Hybrid Rules with Well-Founded Semantics

    Get PDF
    A general framework is proposed for integration of rules and external first order theories. It is based on the well-founded semantics of normal logic programs and inspired by ideas of Constraint Logic Programming (CLP) and constructive negation for logic programs. Hybrid rules are normal clauses extended with constraints in the bodies; constraints are certain formulae in the language of the external theory. A hybrid program is a pair of a set of hybrid rules and an external theory. Instances of the framework are obtained by specifying the class of external theories, and the class of constraints. An example instance is integration of (non-disjunctive) Datalog with ontologies formalized as description logics. The paper defines a declarative semantics of hybrid programs and a goal-driven formal operational semantics. The latter can be seen as a generalization of SLS-resolution. It provides a basis for hybrid implementations combining Prolog with constraint solvers. Soundness of the operational semantics is proven. Sufficient conditions for decidability of the declarative semantics, and for completeness of the operational semantics are given

    Achieving Perfect Imaging beyond Passive and Active Obstacles by a Transformed Bilayer Lens

    Get PDF
    A bilayer lens is proposed based on transformation optics. It is shown that Pendry's perfect lens, perfect bilayer lens made of indefinite media, and the concept of compensated media are well unified under the scope of the proposed bilayer lens. Using this concept, we also demonstrate how one is able to achieve perfect imaging beyond passive objects or active sources which are present in front of the lens.Comment: 15 pages, 6 figure

    A Denotational Semantics for First-Order Logic

    Get PDF
    In Apt and Bezem [AB99] (see cs.LO/9811017) we provided a computational interpretation of first-order formulas over arbitrary interpretations. Here we complement this work by introducing a denotational semantics for first-order logic. Additionally, by allowing an assignment of a non-ground term to a variable we introduce in this framework logical variables. The semantics combines a number of well-known ideas from the areas of semantics of imperative programming languages and logic programming. In the resulting computational view conjunction corresponds to sequential composition, disjunction to ``don't know'' nondeterminism, existential quantification to declaration of a local variable, and negation to the ``negation as finite failure'' rule. The soundness result shows correctness of the semantics with respect to the notion of truth. The proof resembles in some aspects the proof of the soundness of the SLDNF-resolution.Comment: 17 pages. Invited talk at the Computational Logic Conference (CL 2000). To appear in Springer-Verlag Lecture Notes in Computer Scienc

    Reversible Computations in Logic Programming

    Full text link
    [EN] In this work, we say that a computation is reversible if one can find a procedure to undo the steps of a standard (or forward) computation in a deterministic way. While logic programs are often invertible (e.g., one can use the same predicate for adding and for subtracting natural numbers), computations are not reversible in the above sense. In this paper, we present a so-called Landauer embedding for SLD resolution, the operational principle of logic programs, so that it becomes reversible. A proof-of-concept implementation of a reversible debugger for Prolog that follows the ideas in this paper has been developed and is publicly available.This work is partially supported by the EU (FEDER) and the Spanish MCI/AEI under grants TIN2016-76843-C4-1-R/PID2019-104735RB-C41, by the Generalitat Valenciana under grant Prometeo/2019/098 (DeepTrust), and by the COST Action IC1405 on Reversible Computation - extending horizons of computing.Vidal, G. (2020). Reversible Computations in Logic Programming. Springer. 246-254. https://doi.org/10.1007/978-3-030-52482-1_15S246254Apt, K.: From Logic Programming to Prolog. Prentice Hall, Upper Saddle River (1997)Ducassé, M.: Opium: an extendable trace analyzer for prolog. J. Log. Program. 39(1–3), 177–223 (1999). https://doi.org/10.1016/S0743-1066(98)10036-5Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)Lanese, I., Palacios, A., Vidal, G.: Causal-consistent replay debugging for message passing programs. In: Pérez, J.A., Yoshida, N. (eds.) FORTE 2019. LNCS, vol. 11535, pp. 167–184. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21759-4_10Lloyd, J.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1987). https://doi.org/10.1007/978-3-642-83189-8O’Callahan, R., Jones, C., Froyd, N., Huey, K., Noll, A., Partush, N.: Engineering record and replay for deployability: Extended technical report (2017). CoRR abs/1705.05937, http://arxiv.org/abs/1705.05937Ströder, T., Emmes, F., Schneider-Kamp, P., Giesl, J., Fuhs, C.: A linear operational semantics for termination and complexity analysis of ISO prolog. In: Vidal, G. (ed.) LOPSTR 2011. LNCS, vol. 7225, pp. 237–252. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32211-2_16Undo Software: Increasing software development productivity with reversible debugging (2014). https://undo.io/media/uploads/files/Undo_ReversibleDebugging_Whitepaper.pd
    • …
    corecore